Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.441
Filtrar
1.
ACS Chem Neurosci ; 15(4): 854-867, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345920

RESUMO

Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as µ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G-protein-biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains the reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at the MOR using adenylate cyclase inhibition and ß-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and ß-arrestin2 recruitment pathways. Compared to the reference agonist [d-Ala2,N-MePhe4,Gly-ol5]enkephalin, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting ß-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and ß-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. In addition, the extremely high potency of many NSOs now infiltrating illicit drug markets further contributes to the danger posed to public health.


Assuntos
Analgésicos Opioides , Fentanila , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Receptores Opioides mu/agonistas , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Encefalinas/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia
2.
Toxicol Appl Pharmacol ; 483: 116802, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184280

RESUMO

The incidence of postoperative myocardial injury remains high as the underlying pathogenesis is still unknown. The dorsal root ganglion (DRG) neurons express transient receptor potential vanilloid 1 (TRPV1) and its downstream effector, calcitonin gene-related peptide (CGRP) participating in transmitting pain signals and cardiac protection. Opioids remain a mainstay therapeutic option for moderate-to-severe pain relief clinically, as a critical component of multimodal postoperative analgesia via intravenous and epidural delivery. Evidence indicates the interaction of opioids and TRPV1 activities in DRG neurons. Here, we verify the potential impairment of myocardial viability by epidural usage of opioids in postoperative analgesia. We found that large dose of epidural morphine (50 µg) significantly worsened the cardiac performance (+dP/dtmax reduction by 11% and -dP/dtmax elevation by 24%, all P < 0.001), the myocardial infarct size (morphine vs Control, 0.54 ± 0.09 IS/AAR vs. 0.23 ± 0.06 IS/AAR, P < 0.001) and reduced CGRP in the myocardium (morphine vs. Control, 9.34 ± 2.24 pg/mg vs. 21.23 ± 4.32 pg/mg, P < 0.001), while induced definite suppression of nociception in the postoperative animals. It was demonstrated that activation of µ-opioid receptor (µ-OPR) induced desensitization of TRPV1 by attenuating phosphorylation of the channel in the dorsal root ganglion neurons, via inhibiting the accumulation of cAMP. CGRP may attenuated the buildup of ROS and the reduction of mitochondrial membrane potential in cardiomyocytes induced by hypoxia/reoxygenation. The findings of this study indicate that epidurally giving large dose of µ-OPR agonist may aggravate myocardial injury by inhibiting the activity of TRPV1/CGRP pathway.


Assuntos
Analgésicos Opioides , Peptídeo Relacionado com Gene de Calcitonina , Animais , Analgésicos Opioides/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Receptores Opioides mu/agonistas , Morfina/toxicidade , Miocárdio/patologia , Dor/tratamento farmacológico , Dor/metabolismo , Dor/patologia , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios Espinais
3.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37985179

RESUMO

Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at µ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.


Assuntos
Analgésicos Opioides , Morfina , Masculino , Feminino , Camundongos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Fosforilação , Transdução de Sinais , Receptores Opioides , Receptores Opioides mu/agonistas
4.
Pharmacol Res ; 199: 107023, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081336

RESUMO

Opioid Use Disorder (OUD) can be described as intense preoccupation with using or obtaining opioids despite the negative consequences associated with their use. As the number of OUD cases in the U.S. increase, so do the number of opioid-related overdose deaths. In 2022, opioid-related overdose became the No. 1 cause of death for individuals in the U.S. between the ages of 25 and 64 years of age. Because of the introduction of highly potent synthetic opioids (e.g. fentanyl) to the illicit drug market, there is an urgent need for therapeutics that successfully reduce the number of overdoses and can help OUD patients maintain sobriety. Most abused opioids stimulate the mu-opioid receptor (MOR) and activation of this receptor can lead to positive (e.g., euphoria) consequences. However, the negative side effects of MOR stimulation can be fatal (e.g., sedation, respiratory depression). Therefore, the MOR is an attractive target for developing medications to treat OUD. Current FDA drugs include MOR agonists that aid in detoxification and relapse prevention, and MOR antagonists that also serve as maintenance therapies or reverse overdose. These medications are limited by their abuse potential, adverse effects, or pharmacological profiles which leaves ample room for research into designing new chemical entities with optimal physiological effects. These includes, orthosteric ligands that target the primary binding site of the MOR, allosteric ligands that positively, negatively, or "silently" modulate receptor function, and lastly, bitopic ligands target both the orthosteric and allosteric sites simultaneously.


Assuntos
Overdose de Drogas , Transtornos Relacionados ao Uso de Opioides , Humanos , Adulto , Pessoa de Meia-Idade , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia
5.
J Med Chem ; 67(1): 272-288, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38118143

RESUMO

The cyclic peptide c[d-Lys2, Asp5]-DN-9 has recently been identified as a multifunctional opioid/neuropeptide FF receptor agonist, displaying potent analgesic activity with reduced side effects. This study utilized Tyr-c[d-Lys-Gly-Phe-Asp]-d-Pro-NH2 (0), a cyclic hexapeptide derived from the opioid pharmacophore of c[d-Lys2, Asp5]-DN-9, as a chemical template. We designed, synthesized, and characterized 22 analogs of 0 with a single amino acid substitution to investigate its structure-activity relationship. Most of these cyclic hexapeptide analogs exhibited multifunctional activity at µ and δ opioid receptors (MOR and DOR, respectively) and produced antinociceptive effects following subcutaneous administration. The lead compound analog 15 showed potent agonistic activities at the MOR, κ opioid receptor (KOR), and DOR in vitro and produced a strong and long-lasting analgesic effect through peripheral MOR and KOR in the tail-flick test. Further biological evaluation identified that analog 15 did not cause significant side effects such as tolerance, withdrawal, or reward liability.


Assuntos
Analgésicos Opioides , Analgésicos , Analgésicos Opioides/uso terapêutico , Relação Estrutura-Atividade , Analgésicos/farmacologia , Receptores Opioides kappa/metabolismo , Peptídeos Cíclicos/química , Receptores Opioides mu/agonistas
6.
J Med Chem ; 66(24): 17138-17154, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38095323

RESUMO

Our previous study reported the multifunctional agonist for opioid and neuropeptide FF receptors DN-9, along with its cyclic peptide analogues c[D-Cys2, Cys5]-DN-9 and c[D-Lys2, Asp5]-DN-9. These analogues demonstrated potent antinociceptive effects with reduced opioid-related side effects. To develop more stable and effective analgesics, we designed, synthesized, and evaluated seven hydrocarbon-stapled cyclic peptides based on DN-9. In vitro calcium mobilization assays revealed that most of the stapled peptides, except 3, displayed multifunctional agonistic activities at opioid and neuropeptide FF receptors. Subcutaneous administration of all stapled peptides resulted in effective and long-lasting antinociceptive activities lasting up to 360 min. Among these stapled peptides, 1a and 1b emerged as the optimized compounds, producing potent central antinociception following subcutaneous, intracerebroventricular, and oral administrations. Additionally, subcutaneous administration of 1a and 1b caused nontolerance antinociception, with limited occurrence of constipation and addiction. Furthermore, 1a was selected as the final optimized compound due to its wider safety window compared to 1b.


Assuntos
Analgésicos Opioides , Oligopeptídeos , Analgésicos Opioides/efeitos adversos , Oligopeptídeos/química , Analgésicos/química , Peptídeos/química , Receptores de Neuropeptídeos/agonistas , Encéfalo , Receptores Opioides mu/agonistas
7.
Molecules ; 28(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005269

RESUMO

Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52-0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics.


Assuntos
Analgésicos Opioides , Peptídeos Cíclicos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores Opioides delta/agonistas , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Opioides mu/agonistas , Peptídeos
8.
Sci Rep ; 13(1): 18164, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875567

RESUMO

Opioid addiction and the opioid overdose epidemic are becoming more serious, and the development of therapeutic agents is essential for the pharmacological treatment of substance use disorders. The κ-opioid receptor (KOP) is a member of the opioid receptor system that has been gaining attention as a promising molecular target for the treatment of numerous human disorders, including pain, depression, anxiety, and drug addiction. Here, we biologically and pharmacologically evaluated a novel azepane-derived ligand, NP-5497-KA, as a selective KOP agonist. NP-5497-KA had 1000-fold higher selectivity for the KOP over the µ-opioid receptor (MOP), which was higher than nalfurafine (KOP/MOP: 65-fold), and acted as a selective KOP full agonist in the 3',5'-cyclic adenosine monophosphate assay. The oral administration of NP-5497-KA (1-10 mg/kg) dose-dependently suppressed morphine-induced conditioned place preference in C57BL/6 J mice, and its effects were comparable to an intraperitoneal injection of nalfurafine (1-10 µg/kg). Nalfurafine (10 µg/kg) significantly inhibited rotarod performance, whereas NP-5497-KA (10 mg/kg) exerted no effect on rotarod performance. These results indicate that NP-5497-KA may be a novel option for the treatment of opioid use disorder with fewer side effects.


Assuntos
Morfina , Transtornos Relacionados ao Uso de Opioides , Camundongos , Animais , Humanos , Morfina/farmacologia , Camundongos Endogâmicos C57BL , Receptores Opioides , Receptores Opioides mu/agonistas , Receptores Opioides kappa/agonistas , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Recompensa , Analgésicos Opioides/farmacologia
9.
Neurosci Lett ; 815: 137479, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714288

RESUMO

Dezocine is a partial mu opioid receptor agonist previously used as an analgesic for perioperative acute pain in the US and is now the most used perioperative analgesic in China. In general, dezocine is well-tolerated, with relatively minimal risk of fatal respiratory depression. To our knowledge, there are no reports of dezocine addiction, which suggests that the abuse liability of dezocine is low. The overarching goal of this study was to determine the efficacy of a novel formulation of dezocine (Cyc-dezocine), developed for intraperitoneal or intranasal administration, to reduce voluntary opioid taking in rats. One cohort of male rats self-administered intravenous oxycodone on a fixed-ratio 5 schedule of reinforcement. Once oxycodone taking stabilized, rats were pretreated with systemic injections of vehicle or Cyc-dezocine. Cyc-dezocine dose-dependently reduced intravenous oxycodone self-administration. A second cohort of male and female rats self-administered oral oxycodone from drinking water. Once oxycodone taking stabilized, rats were pretreated with intra-nasal Cyc-dezocine. Consistent with the effects of i.p. Cyc-dezocine in our intravenous oxycodone studies, intra-nasal Cyc-dezocine attenuated oral oxycodone self-administration. Together, these findings support the need for further studies investigating the therapeutic potential of Cyc-dezocine for treating opioid use disorder.


Assuntos
Analgésicos Opioides , Oxicodona , Humanos , Ratos , Masculino , Feminino , Animais , Oxicodona/farmacologia , Oxicodona/uso terapêutico , Tetra-Hidronaftalenos/farmacologia , Analgésicos/farmacologia , Relação Dose-Resposta a Droga , Receptores Opioides mu/agonistas
10.
Psychopharmacology (Berl) ; 240(12): 2573-2584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658878

RESUMO

RATIONALE: Novel synthetic opioids (NSOs) are emerging in recreational drug markets worldwide. In particular, 2-benzylbenzimidazole 'nitazene' compounds are problematic NSOs associated with serious clinical consequences, including fatal respiratory depression. Evidence from in vitro studies shows that alkoxy chain length can influence the potency of nitazenes at the mu-opioid receptor (MOR). However, structure-activity relationships (SARs) of nitazenes for inducing opioid-like effects in animal models are not well understood compared to relevant opioids contributing to the ongoing opioid crisis (e.g., fentanyl). OBJECTIVES: Here, we examined the in vitro and in vivo effects of nitazene analogues with varying alkoxy chain lengths (i.e., metonitazene, etonitazene, isotonitazene, protonitazene, and butonitazene) as compared to reference opioids (i.e., morphine and fentanyl). METHODS AND RESULTS: Nitazene analogues displayed nanomolar affinities for MOR in rat brain membranes and picomolar potencies to activate MOR in transfected cells. All compounds induced opioid-like effects on locomotor activity, hot plate latency, and body temperature in male mice, and alkoxy chain length markedly influenced potency. Etonitazene, with an ethoxy chain, was the most potent analogue in MOR functional assays (EC50 = 30 pM, Emax = 103%) and across all in vivo endpoints (ED50 = 3-12 µg/kg). In vivo SARs revealed that ethoxy, isopropoxy, and propoxy chains engendered higher potencies than fentanyl, whereas methoxy and butoxy analogues were less potent. MOR functional potencies, but not MOR affinities, were positively correlated with in vivo potencies to induce opioid effects. CONCLUSIONS: Overall, our data show that certain nitazene NSOs are more potent than fentanyl as MOR agonists in mice, highlighting concerns regarding the high potential for overdose in humans who are exposed to these compounds.


Assuntos
Analgésicos Opioides , Fentanila , Ratos , Humanos , Masculino , Camundongos , Animais , Analgésicos Opioides/farmacologia , Fentanila/farmacologia , Receptores Opioides mu/agonistas
11.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511469

RESUMO

Early life stress, such as child abuse and neglect, and psychosocial stress in adulthood are risk factors for psychiatric disorders, including depression and anxiety. Furthermore, exposure to these stresses affects the sensitivity to pain stimuli and is associated with the development of chronic pain. However, the mechanisms underlying the pathogenesis of stress-induced depression, anxiety, and pain control remain unclear. Endogenous opioid signaling is reportedly associated with analgesia, reward, addiction, and the regulation of stress responses and anxiety. Stress alters the expression of various opioid receptors in the central nervous system and sensitivity to opioid receptor agonists and antagonists. µ-opioid receptor-deficient mice exhibit attachment disorders and autism-like behavioral expression patterns, while those with δ-opioid receptor deficiency exhibit anxiety-like behavior. In contrast, deficiency and antagonists of the κ-opioid receptor suppress the stress response. These findings strongly suggest that the expression and dysfunction of the endogenous opioid signaling pathways are involved in the pathogenesis of stress-induced psychiatric disorders and chronic pain. In this review, we summarize the latest basic and clinical research studies on the effects of endogenous opioid signaling on early-life stress, psychosocial stress-induced psychiatric disorders, and chronic pain.


Assuntos
Dor Crônica , Regulação Emocional , Camundongos , Animais , Analgésicos Opioides/efeitos adversos , Dor Crônica/etiologia , Receptores Opioides/metabolismo , Peptídeos Opioides/fisiologia , Receptores Opioides mu/agonistas , Antagonistas de Entorpecentes/farmacologia
12.
Eur J Med Chem ; 258: 115608, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37437352

RESUMO

The compelling demand of a consummate analgesic medication without addiction is rising due to the clinical mistreatment. Additionally, the series of severe untoward effects usually deterred the utilization while coping with serious pain. As a possible turning point, we revealed that compound 14 is a dual agonist of mu opioid receptor (MOR) and nociceptin-orphanin FQ opioid peptide (NOP) receptor in this study. More importantly, compound 14 achieves pain relieving at very small doses, meanwhile, reduces several unwanted side effects such as constipation, reward, tolerance and withdrawal effects. Here, we evaluated the antinociception and side effects of this novel compound from wild type and humanized mice to further develop a safer prescription analgesic drug.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Receptores Opioides mu , Camundongos , Animais , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Receptor de Nociceptina , Peptídeos Opioides/farmacologia , Peptídeos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Analgésicos/efeitos adversos
13.
J Med Chem ; 66(15): 10304-10341, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467430

RESUMO

A new generation of dual-target µ opioid receptor (MOR) agonist/dopamine D3 receptor (D3R) antagonist/partial agonists with optimized physicochemical properties was designed and synthesized. Combining in vitro cell-based on-target/off-target affinity screening, in silico computer-aided drug design, and BRET functional assays, we identified new structural scaffolds that achieved high affinity and agonist/antagonist potencies for MOR and D3R, respectively, improving the dopamine receptor subtype selectivity (e.g., D3R over D2R) and significantly enhancing central nervous system multiparameter optimization scores for predicted blood-brain barrier permeability. We identified the substituted trans-(2S,4R)-pyrrolidine and trans-phenylcyclopropyl amine as key dopaminergic moieties and tethered these to different opioid scaffolds, derived from the MOR agonists TRV130 (3) or loperamide (6). The lead compounds 46, 84, 114, and 121 have the potential of producing analgesic effects through MOR partial agonism with reduced opioid-misuse liability via D3R antagonism. Moreover, the peripherally limited derivatives could have therapeutic indications for inflammation and neuropathic pain.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Dopamina , Ligantes , Analgésicos/farmacologia , Receptores de Dopamina D3/agonistas , Receptores Opioides mu/agonistas
14.
Bioorg Med Chem Lett ; 92: 129405, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414346

RESUMO

Structural optimization of a previously reported agonist of µOR, PZM21 is described resulting in the discovery of a novel series of amides with at least 4-folds enhanced CNS penetration in rat. Furthermore, these efforts yielded compounds with varying levels of efficacy on the receptor ranging from high efficacy agonists such as compound 20 to antagonists, such as 24. The correlation between in vitro activation of µOR and relative activity in models of analgesia for these compounds is discussed. The compelling results obtained in these studies demonstrate the potential utility of these newly discovered compounds in the treatment of pain and opioid use disorder.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Dor , Ratos , Animais , Dor/tratamento farmacológico , Amidas , Encéfalo/metabolismo , Receptores Opioides mu/agonistas , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico
15.
Drug Alcohol Depend ; 249: 109939, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276825

RESUMO

BACKGROUND: The emergence of novel synthetic opioids (NSOs) is contributing to the opioid overdose crisis. While fentanyl analogs have historically dominated the NSO market, a shift towards non-fentanyl compounds is now occurring. METHODS: Here, we examined the neuropharmacology of structurally distinct non-fentanyl NSOs, including U-47700, isotonitazene, brorphine, and N-desethyl isotonitazene, as compared to morphine and fentanyl. Compounds were tested in vitro using opioid receptor binding assays in rat brain tissue and by monitoring forskolin-stimulated cAMP accumulation in cells expressing the human mu-opioid receptor (MOR). Compounds were administered subcutaneously to male Sprague-Dawley rats, and hot plate antinociception, catalepsy score, and body temperature changes were measured. RESULTS: Receptor binding results revealed high MOR selectivity for all compounds, with MOR affinities comparable to those of morphine and fentanyl (i.e., nM). All drugs acted as full-efficacy MOR agonists in the cyclic AMP assay, but nitazene analogs had greater functional potencies (i.e., pM) compared to the other drugs (i.e., nM). When administered to rats, all compounds induced opioid-like antinociception, catalepsy, and body temperature changes, but nitazenes were the most potent. Similar to fentanyl, the nitazenes had faster onset and decline of in vivo effects when compared to morphine. In vivo potencies to induce antinociception and catalepsy (i.e., ED50s) correlated with in vitro functional potencies (i.e., EC50s) but not binding affinities (i.e., Kis) at MOR. CONCLUSIONS: Collectively, our findings indicate that non-fentanyl NSOs pose grave danger to those individuals who use opioids. Continued vigilance is needed to identify and characterize synthetic opioids as they emerge in clandestine drug markets.


Assuntos
Analgésicos Opioides , Drogas Ilícitas , Ratos , Masculino , Humanos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Fentanila/farmacologia , Drogas Ilícitas/farmacologia , Catalepsia , Neurofarmacologia , Ratos Sprague-Dawley , Morfina/farmacologia , Receptores Opioides mu/agonistas
16.
Pharmacol Res Perspect ; 11(4): e01111, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381112

RESUMO

Low-efficacy mu-opioid receptor (MOR) agonists represent promising therapeutics, but existing compounds (e.g., buprenorphine, nalbuphine) span a limited range of low MOR efficacies and have poor MOR selectivity. Accordingly, new and selective low-efficacy MOR agonists are of interest. A novel set of chiral C9-substituted phenylmorphans has been reported to display improved MOR selectivity and a range of high-to-low MOR efficacies under other conditions; however, a full opioid receptor binding profile for these drugs has not been described. Additionally, studies in mice will be useful for preclinical characterization of these novel compounds, but the pharmacology of these drugs in mice has also not been examined. Accordingly, the present study characterized the binding selectivity and in vitro efficacy of these compounds using assays of opioid receptor binding and ligand-stimulated [35 S]GTPÉ£S binding. Additionally, locomotor effects were evaluated as a first step for in vivo behavioral assessment in mice. The high-efficacy MOR agonist and clinically effective antidepressant tianeptine was included as a comparator. In binding studies, all phenylmorphans showed improved MOR selectivity relative to existing lower-efficacy MOR agonists. In the ligand-stimulated [35 S]GTPÉ£S binding assay, seven phenylmorphans had graded levels of sub-buprenorphine MOR efficacy. In locomotor studies, the compounds again showed graded efficacy with a rapid onset and ≥1 h duration of effects, evidence for MOR mediation, and minor sex differences. Tianeptine functioned as a high-efficacy MOR agonist. Overall, these in vitro and in vivo studies support the characterization of these compounds as MOR-selective ligands with graded MOR efficacy and utility for further behavioral studies in mice.


Assuntos
Analgésicos Opioides , Buprenorfina , Receptores Opioides mu , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato) , Ligantes , Receptores Opioides mu/agonistas
17.
Reprod Toxicol ; 119: 108403, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196679

RESUMO

Opioids remain the most powerful analgesics for moderate to severe pain but their clinical use, misuse and abuse has been an alarming medical problem, especially for those users at child-bearing age. Mu-opioid receptor (MOR) biased agonists have been suggested as superior alternatives with better therapeutic ratios. We recently discovered and characterized a novel MOR biased agonist, LPM3480392, which demonstrates robust analgesic effect, favorable pharmacokinetic performance, and mild respiratory suppression in vivo. To understand the safety profile of LPM3480392 on the reproductive system and embryonic development, this study evaluated the effects of LPM3480392 on the fertility and early embryonic development, embryo-fetal development, and pre- and postnatal development in rats. Results showed that LPM3480392 had mild effects on parental male and female animals, accompanied by subtle early embryonic loss and delayed ossification of fetal development during organogenesis period. In addition, although minor effects were found on normal developmental milestones and behaviors in the pups, there was no evidence of malformed effect. In conclusion, these results suggest that LPM3480392 has a favorable safety profile with only minor effects on the reproductive and developmental outcomes in animals, which support the development of LPM3480392 as a novel analgesic.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Gravidez , Ratos , Masculino , Animais , Feminino , Receptores Opioides mu/agonistas , Receptores Opioides mu/uso terapêutico , Analgésicos Opioides/toxicidade , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Reprodução
18.
Drugs ; 83(9): 771-793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209211

RESUMO

As clinical use of currently available opioid analgesics is often impeded by dose-limiting adverse effects, such as abuse liability and respiratory depression, new approaches have been pursued to develop safe, effective, and non-addictive pain medications. After the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor more than 25 years ago, NOP receptor-related agonists have emerged as a promising target for developing novel and effective opioids that modulate the analgesic and addictive properties of mu-opioid peptide (MOP) receptor agonists. In this review, we highlight the effects of the NOP receptor-related agonists compared with those of MOP receptor agonists in experimental rodent and more translational non-human primate (NHP) models and the development status of key NOP receptor-related agonists as potential safe and non-addictive analgesics. Several lines of evidence demonstrated that peptidic and non-peptidic NOP receptor agonists produce potent analgesic effects by intrathecal delivery in NHPs. Moreover, mixed NOP/MOP receptor partial agonists (e.g., BU08028, BU10038, and AT-121) display potent analgesic effects when administered intrathecally or systemically, without eliciting adverse effects, such as respiratory depression, itch behavior, and signs of abuse liability. More importantly, cebranopadol, a mixed NOP/opioid receptor agonist with full efficacy at NOP and MOP receptors, produces robust analgesic efficacy with reduced adverse effects, conferring promising outcomes in clinical studies. A balanced coactivation of NOP and MOP receptors is a strategy that warrants further exploration and refinement for the development of novel analgesics with a safer and effective profile.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Respiratória , Animais , Humanos , Receptor de Nociceptina , Receptores Opioides/agonistas , Dor/tratamento farmacológico , Receptores Opioides mu/agonistas , Analgésicos Opioides/efeitos adversos , Analgésicos/efeitos adversos , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico
19.
Glia ; 71(8): 1906-1920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017183

RESUMO

Microglia participates in the modulation of pain signaling. The activation of microglia is suggested to play an important role in affective disorders that are related to a dysfunction of the mesocorticolimbic system (MCLS) and are commonly associated with chronic pain. Moreover, there is evidence that mu-opioid receptors (MORs), expressed in the MCLS, are involved in neuroinflammatory events, although the way by which they do it remains to be elucidated. In this study, we propose that MOR pharmacological activation within the MCLS activates and triggers the local release of proinflammatory cytokines and this pattern of activation is impacted by the presence of systemic inflammatory pain. To test this hypothesis, we used in vivo microdialysis coupled with flow cytometry to measure cytokines release in the nucleus accumbens and immunofluorescence of IBA1 in areas of the MCLS on a rat model of inflammatory pain. Interestingly, the treatment with DAMGO, a MOR agonist locally in the nucleus accumbens, triggered the release of the IL1α, IL1ß, and IL6 proinflammatory cytokines. Furthermore, MOR pharmacological activation in the ventral tegmental area (VTA) modified the levels of IBA1-positive cells in the VTA, prefrontal cortex, the nucleus accumbens and the amygdala in a dose-dependent way, without impacting mechanical nociception. Additionally, MOR blockade in the VTA prevents DAMGO-induced effects. Finally, we observed that systemic inflammatory pain altered the IBA1 immunostaining derived from MOR activation in the MSCLS. Altogether, our results indicate that the microglia-MOR relationship could be pivotal to unravel some inflammatory pain-induced comorbidities related to MCLS dysfunction.


Assuntos
Dor Crônica , Microglia , Doenças Neuroinflamatórias , Córtex Pré-Frontal , Receptores Opioides mu , Área Tegmentar Ventral , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Microglia/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Animais , Ratos , Modelos Animais de Doenças , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Masculino , Feminino , Ratos Sprague-Dawley
20.
Neuropharmacology ; 232: 109526, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004753

RESUMO

The δ opioid receptor (δOR) is a therapeutic target for the treatment of various neurological disorders, such as migraines, chronic pain, alcohol use, and mood disorders. Relative to µ opioid receptor agonists, δOR agonists show lower abuse liability and may be potentially safer analgesic alternatives. However, currently no δOR agonists are approved for clinical use. A small number of δOR agonists reached Phase II trials, but ultimately failed to progress due to lack of efficacy. One side effect of δOR agonism that remains poorly understood is the ability of δOR agonists to produce seizures. The lack of a clear mechanism of action is partly driven by the fact that δOR agonists range in their propensity to induce seizure behavior, with multiple δOR agonists reportedly not causing seizures. There is a significant gap in our current understanding of why certain δOR agonists are more likely to induce seizures, and what signal-transduction pathway and/or brain area is engaged to produce these seizures. In this review we provide a comprehensive overview of the current state of knowledge of δOR agonist-mediated seizures. The review was structured to highlight which agonists produce seizures, which brain regions have been implicated and which signaling mediators have been examined in this behavior. Our hope is that this review will spur future studies that are carefully designed and aimed to solve the question why certain δOR agonists are seizurogenic. Obtaining such insight may expedite the development of novel δOR clinical candidates without the risk of inducing seizures. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".


Assuntos
Dor Crônica , Receptores Opioides delta , Humanos , Receptores Opioides delta/agonistas , Ligantes , Encéfalo/metabolismo , Convulsões/induzido quimicamente , Receptores Opioides mu/agonistas , Analgésicos Opioides/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...